

SECTION I: INTRODUCTION
Writing The First Application

Any project that requires database interaction have started looking at ORM tools than
considering the traditional approach i.e. JDBC. This saves a huge amount of time revolving
around unnecessary chores.

However, to make this more convincible, let's look at a practical implementation and work
on it.

This is the only compelling reason why this chapter has been introduced. This chapter aims
at convincing the readers/developers about how easy it is, to begin using an ORM tool via
Java Persistence API.

This chapter does not cover the basics or a detailed explanation of ORM tool or the API.
Those topics will be covered in the chapters that follow. This chapter leads through the
building of a small example called GuestBook that uses JPA and a JPA provider.

To get the first application to work, the following needs to be setup:

 Database

 An ORM tool of choice

Chapter

3

26 Java Persistence API In EJB 3 For Professionals

 Persistence Configuration file

 Entity - Plain Old Java Objects [POJOs]

Once all this is in place, the application logic needs to be written which uses JPA to actually
do something.

Application Requirement Specifications

The application [example] to be built is called GuestBook. This application should be capable
of accepting and displaying visitor's comments.

To achieve this, it should provide a user interface that accepts visitor's name and
message/comments.

Diagram 3.1: GuestBook data entry form

After such information is captured and stored, other visitors to the application should be able
to view all the available comments as shown in diagram 3.2.

This user interface displays the visitor's name along with the message and the date when the
message was keyed in. It should also provide a link to sign the GuestBook which when
clicked should display the GuestBook data entry form as shown in diagram 3.1.

Diagram 3.2: View GuestBook

Writing The First Application 27

Where Does ORM/JPA Fit

An ORM tool can be invoked from a Java application either directly or via another
framework such as Struts, Spring and so on.

Java Persistence API makes it easy for these frameworks to support in one way or another.

Section VI: Enterprise Application Development explains how an ORM tool and JPA can be
configured and integrated with such frameworks.

An ORM tool along with the JPA can be used in:

 A Swing application

 A Servlet

 A Portlet

 A JSP

 An Enterprise application

 Any other kind of Java application that has access to a database

Typically, an ORM tool is used to create a Data Access Layer for an application.

The most typical workflow would be:

 Define the configuration details using a Persistence Unit

 Create an EntityManagerFactory object by referencing the Persistence Unit

 Instantiate the EntityManager object through which the application accesses ORM tool's
representation of the database

From this application's [GuestBook] point of view, an ORM tool will be used as follows:

 The user invokes the application

 The "Sign the Guest Book" data entry form is served to allow capturing the visitor's name
and comments

28 Java Persistence API In EJB 3 For Professionals

 The user keys in the details and clicks Submit

After such information is captured and the form is submitted, the server-side script in this
case a JSP [GuestBookView.jsp] takes charge.

This script invokes the ORM as follows:

 Creates an EntityManagerFactory object by referencing the Persistence Unit

 Instantiate the EntityManager object

 Uses the persist() method of the instantiated EntityManager object to save the captured
data to the configured database

 Uses the createQuery() method of the instantiated EntityManager object to query the
configured database and fetch all the entries to display them

This user interface displays the visitor's name along with the message and the date when the
message was keyed in.

Let's begin!

Software Requirements

From the application development perspective, the following software will be required on
the development machine:

 Java Development Kit

 NetBeans IDE [The development IDE]

 MySQL Community Server [The database server]

 JDBC Driver for MySQL

 Glassfish Application Server v3

o EclipseLink [Default ORM that comes bundled]

OR

Writing The First Application 29

 Glassfish Application Server v2

o TopLink [Default ORM that comes bundled]

RREEMMIINNDDEERR

The above mentioned software setups are available in this book's accompanying
CDROM.

Library Files

The following Java library [.JAR] is required:

 JDBC driver: This will be specific to a relational database to be used. In this case MySQL
is used as the database of choice, hence, the database specific JDBC driver file will be
MySQL Connector/J 5.1.7 [can be downloaded from http://www.mysql.com also
available in the Book's accompanying CDROM]

HHIINNTT

An ORM tool does not include any database specific JDBC drivers. These must
be obtained separately. Typically, the database provider offers them, as a
separate downloads or bundled with the database installation.

The Application Development Approach

This application will be built using JSP.

The data entry form that captures the data will be called GuestBookEntry.jsp and the page
that will fetch and display the entries will be called GuestBookView.jsp.

The captured data will be stored in a table called GuestBook under the MySQL database
server.

In the Java application, the POJO that will represent the GuestBook database table will be
called myApp.Guestbook.java.

Just to make this simple, the application development will be carried out/demonstrated
using a development IDE called NetBeans IDE 6.5. Ensure that this IDE [available in the
Book's accompanying CDROM] is installed on the development machine prior proceeding
further.

Refer to Appendix A: Installing The NetBeans IDE for the installation steps.

30 Java Persistence API In EJB 3 For Professionals

The following are the steps that will help build this application.

1. Create the database schema

2. Create the Web Application

3. Add the Java libraries [JDBC driver] to the application

4. Create a POJO to represent the table in the database schema

5. Create a Persistence unit that points to the database server [MySQL] using JNDI

6. Annotate the POJO to indicate the mapping between the JavaBean properties and the
columns in the table

7. Create JSPs with code spec:

a. To build an EntityManagerFactory object by referencing the Persistence Unit

b. To obtain an EntityManager object from the EntityManagerFactory

c. To perform the required database operations

Creating Database And Tables In MySQL

Since MySQL is the database server of choice, ensure that the MySQL database engine
[available in the Book's accompanying CDROM] is installed on the development machine
prior proceeding further. This can also be downloaded from the website
http://www.mysql.com/download.

Login to the MySQL database using a valid username and password. The pre-created super
administrator called root can also be used.

Create the database named GuestBook:

CREATE DATABASE GuestBook;

Switch to the database GuestBook:

USE GuestBook;

Create the table named GuestBook:

CREATE TABLE GuestBook(
 VisitorNo Int PRIMARY KEY AUTO_INCREMENT,
 VisitorName varchar(50),
 Message varchar(100),
 MessageDate varchar(40));

Writing The First Application 31

Creating A Web Application

Since NetBeans is the IDE of choice throughout this book. Use it to create a new Web
Application Project called GuestBook. Run the NetBeans IDE and create a new Web
Application project, as shown in diagram 3.3.1.

Diagram 3.3.1: New Project

Click . Name this Web application as GuestBook as shown in diagram 3.3.2.

Diagram 3.3.2: Name and Location

32 Java Persistence API In EJB 3 For Professionals

This page is not part of the book preview.

Writing The First Application 33

Diagram 3.3.4: GuestBook in NetBeans IDE

Once the NetBeans IDE brings up the GuestBook application, the next step is to add the
required library files [JDBC driver] to the GuestBook application.

Adding The Required Library Files

It's a good practice to manually create a dedicated lib folder with all the required library files in the
project folder and then using NetBeans add libraries from this folder as the source.

To do so,

Create a directory called lib under <Drive>:\NetBeansProjects\GuestBook.
[NetBeansProjects is the folder where NetBeans places the projects created]

JDBC Driver For MySQL

MySQL provides connectivity to client applications developed in the Java EE 5 via a JDBC
driver named MySQL Connector/J.

34 Java Persistence API In EJB 3 For Professionals

MySQL Connector/J is a native Java driver that converts JDBC calls into the network
protocol used by the MySQL database. MySQL Connector/J is a Type 4 driver, which means
that MySQL Connector is pure Java code spec and communicates directly with the MySQL
server using the MySQL protocol.

MySQL Connector/J allows the developers working with Java EE 5, to build applications,
which interact with MySQL and connect all corporate data even in a heterogeneous
environment.

Visit the site http://www.mysql.com to download the MySQL Connector/J JDBC Driver.

At the time of writing this book the latest version of the MySQL Connector/J was 5.1.7
[available in this Book's accompanying CDROM].

After it is downloaded, using any unzip utility such as Winzip unzip the contents of the zip
file. Copy the mysql-connector-java-X.X.X-bin.jar library file to the lib directory created
earlier under <Drive>:\NetBeansProjects\GuestBook to store the JDBC library file.

Now add this library file to the project using NetBeans. Expand the Web application project
structure in the Project pane, if not already expanded. Right-click on the Libraries folder,
select the Add JAR/Folder... menu item as shown in diagram 3.4.1.

Diagram 3.4.1: Add Jar/Folder

Writing The First Application 35

This page is not part of the book preview.

36 Java Persistence API In EJB 3 For Professionals

Now, let's move to the application development area.

Creating A JavaBean Class

To hold the captured data in a structured manner, a bean class is required. This class should
expose the following properties:

Property Name To Store
visitorNo The Primary Key value
visitorName Visitor's Name
message Message that the visitor enters
messageDate The date/time on which the message was entered

The primary purpose of having such a class is to hold individual guestbook entry as and
when they are captured.

This class must be annotated with javax.persistence.Entity. Entity classes become a table in a
relational database. Instances of this class becomes rows in the table.

All entities must have a primary key. Keys can be a single field or a combination of fields.
JPA also allows to auto generate the primary key in the database using the @GeneratedValue
annotation.

The following are the steps to create the entity class using the NetBeans IDE:

1. Right click Sources Package directory, select New Java Class… as shown in diagram
3.5.1

Diagram 3.5.1: Creating entity Class

Writing The First Application 37

2. Enter Guestbook in the Class Name textbox and enter myApp in the Package drop
down list box as shown in diagram 3.5.2

Diagram 3.5.2: Naming the Java class file

3. Click Finish

This creates the bean class named Guestbook.java under the package called myApp.

Guestbook.java [Code Spec]

Edit the Guestbook.java file with the following contents.

38 Java Persistence API In EJB 3 For Professionals

This page is not part of the book preview.

Writing The First Application 39

This page is not part of the book preview.

40 Java Persistence API In EJB 3 For Professionals

The identifier property [@Id] visitorNo maps to a column named VisitorNo

o The Primary Key value will be generated by MySQL [@GeneratedValue]

CREATE TABLE GuestBook(

 VisitorNo Int PRIMARY KEY AUTO_INCREMENT,

 VisitorName varchar(50),
 Message varchar(100),
 MessageDate varchar(40));

 Other properties visitorName, message, messageDate map to columns VisitorName,
Message, MessageDate respectively

HHIINNTT

By default each field is mapped to a column with the name of the field. However, if
column names are different than the field names, they can be specified using
@Column(name="ColumnName").

All these attributes of the Guestbook class have JavaBean style property accessor methods.

The class also has a constructor with no parameters.

Creating Persistence Unit [persistence.xml]

JPA uses the persistence.xml file to create the connection and setup the required
environment. This file is used to provide the information which is necessary for making
database connections. In this file the JNDI data source that indicates the database driver, the
database location, the user and the password is specified.

The NetBeans IDE comes bundled with a plug-in that allows creating a persistence unit using
a simple wizard.

To create persistence.xml using this plug-in, click File New File, select the Persistence
category and choose the option Persistence Unit and click Next as shown in diagram 3.6.1.

Writing The First Application 41

This page is not part of the book preview.

42 Java Persistence API In EJB 3 For Professionals

This page is not part of the book preview.

Writing The First Application 43

This page is not part of the book preview.

44 Java Persistence API In EJB 3 For Professionals

This page is not part of the book preview.

Writing The First Application 45

This page is not part of the book preview.

46 Java Persistence API In EJB 3 For Professionals

Click Finish.

This creates the persistence.xml file.

This file is populated with the appropriate code spec:

This wizard also creates a server resource file. This file automatically creates a JNDI data
source on the application server when this application is deployed.

Writing The First Application 47

This page is not part of the book preview.

48 Java Persistence API In EJB 3 For Professionals

Creating JSPs

Before creating the JSP, let's create a directory to hold JSPs.

The following are the steps to create the directory:

1. Right click Web Pages directory, select New Folder… as shown in diagram 3.7.1

Diagram 3.7.1: Creating Folder

2. Enter the name JSP in the Folder Name textbox as shown in diagram 3.7.2

Writing The First Application 49

This page is not part of the book preview.

50 Java Persistence API In EJB 3 For Professionals

This page is not part of the book preview.

Writing The First Application 51

3. Click Finish

This creates the JSP named GuestBookEntry.jsp under the JSP directory created earlier.

GuestBookEntry.jsp [Code Spec]

Edit the GuestBookEntry.jsp file with the following contents.

52 Java Persistence API In EJB 3 For Professionals

Explanation:

This is the data entry form that allows capturing the visitor's name and comments and
submits the data to another server-side script called GuestBookView.jsp for further
processing.

GuestBookView.jsp [Code Spec]

Using NetBeans create one more JSP called GuestBookView.jsp using the same steps as
shown earlier.

Writing The First Application 53

Edit the GuestBookView.jsp file with the following contents.

54 Java Persistence API In EJB 3 For Professionals

This page is not part of the book preview.

Writing The First Application 55

This page is not part of the book preview.

56 Java Persistence API In EJB 3 For Professionals

This page is not part of the book preview.

Writing The First Application 57

This page is not part of the book preview.

58 Java Persistence API In EJB 3 For Professionals

This page is not part of the book preview.

Writing The First Application 59

This page is not part of the book preview.

60 Java Persistence API In EJB 3 For Professionals

Here, an iterator is used to traverse through the List object called guestbook. This list object
was populated earlier by:

Using <TABLE>, <TR> and <TD> the elements of the List object are placed.

Editing The web.xml File

In NetBeans, by default, the web.xml file uses the index.jsp file as the welcome file i.e.
whenever the application is run the web.xml file will display the index.jsp file.

This file needs to be edited to invoke the application's data entry form [GuestBookEntry.jsp]
every time it's invoked.

Edit the web.xml file with following contents:

Writing The First Application 61

The GuestBook Application Structure

Running The GuestBook Application

Now that the application is ready, let's run this application [source code available on this
Book's accompanying CDROM].

Begin by building the project, using the NetBeans IDE.

To do so, right click the GuestBook project and select the Build menu item as shown in
diagram 3.8.1.

62 Java Persistence API In EJB 3 For Professionals

Diagram 3.8.1: Building the project

Then run the application by right clicking the GuestBook project and selecting the Run menu
item as shown in diagram 3.8.2.

Writing The First Application 63

This page is not part of the book preview.

64 Java Persistence API In EJB 3 For Professionals

This page is not part of the book preview.

Writing The First Application 65

Diagram 3.8.5: Viewing data

When the GuestBookView.jsp page appears, the data entered by the user is stored in the
MySQL database table named GuestBook that was created earlier.

To ensure that this was done successfully, open MySQL command line utility and query the
table to view the following output:

+-----------+---------------+--+------------------------------+
| VisitorNo | VisitorName | Message | MessageDate |
+-----------+---------------+--+------------------------------+
| 1 | Sharanam Shah | Welcome Everyone, This is my first Guest Book | Mon Feb 23 15:14:43 ICT 2009 |
+-----------+---------------+--+------------------------------+
1 row in set (0.00 sec)

Click link available on the top right corner of the page to go back to the Guest Book
data entry form.

This chapter dealt with building a Web application and integrating JPA and Eclipselink into
that application that exemplifies the core JPA concepts discussed in the first two chapters.

The Book CDROM holds the complete application source code built using the NetBeans IDE
for the following applications:

 GuestBook_Chap03_TopLink [Using GlassFish v2 TopLink]

 GuestBook_Chap03_EclipseLink [Using GlassFish v3 EclipseLink]

This can be directly used by making appropriate changes [username/password] to the
configuration file [persistence.xml / sun-resource.xml].

