

SECTION III: GETTING STARTED
WITH STRUTS2
Working With Actions

Struts2 has a single controller that handles all the user requests by invoking appropriate
classes containing the required business logic. These classes are known as Action classes.

All the heavy lifting in the Web application is done by Actions. Actions interact with
database and business rule engines, thus help transform the HTML into a rich, dynamic Web
experience. After doing its job, an Action returns a control result string to indicate what the
framework should do next.

Often, the next step is to render the result or display an error. In either case, the Action does
not worry about generating the response. It only decides which logical result to present next.

Actions are simple Java objects. Actions are instantiated one object per request.

The Struts2 filter based on the request URI decides which action to instantiate. After the
action to be instantiated is chosen, an instance of that action is created and the execute()
method is invoked.

Chapter

7

88 Struts 2 For Beginners

Role Of Action

Actions Provide Encapsulation

One of the prime responsibilities of this role is to hold the business logic. Actions use the
execute() method for this purpose. The code spec inside the execute() method should only
hold the logic of the work associated with the request.

HHIINNTT

By convention, Actions are invoked by calling the execute() method. However,
any other method that returns a String value can be used instead, simply by
adding the appropriate configuration in the struts.xml file.

Code Spec:

package myApp;

public class simpleApp
{
 public String execute()
 {
 setMessage("Hi " + getName());
 return "SUCCESS";
 }
}

Explanation:
Here, the Action class is named simpleApp. The method that is invoked when this action is
processed is the execute() method that encapsulates the business logic which in this case is a
simple concatenation of two strings.

The action class does not need to:

 Extend another class
 Implement any interfaces

Struts2 Actions classes are simple objects very similar to a POJO [Plain Old Java Object].

RREEMMIINNDDEERR

POJOs are ordinary Java objects which do not implement any interface or extend
any other Java class and hence, does not depend on other APIs.

Working With Actions 89

The importance of POJO as action is that there is no need to use extra objects in Struts2
framework. It is faster, simpler and easier to develop. It also shows how to organize and
encapsulate the domain logic, access the database, manage transactions and handle the
database concurrency.

The action class has one method named [by convention] execute. This method need not be
named execute, it can be called anything as desired, provided that method returns a String.
The only change needed would be in the configuration file [struts.xml]. If needed, the
method may throw an exception.

The execute method does not accept any parameters, but it does returns a String object.
Different return types can be used, by using the helper interfaces available in the Struts2
framework.

The helper interface provides common results such as SUCCESS, NONE, ERROR, INPUT
and LOGIN.

These are string constants that can be utilized to return values to the framework that in turn
help the framework decide the appropriate View.

From the MVC point of view, the Action Class acts as a Model. It executes particular
business logic depending on the Request object and the input parameters it receives.

Actions Help Carry Data

Actions also carry the data around. The data is held local to the Action which makes it
available during the execution of the business logic. The data can be set and retrieved using a
bunch of JavaBeans properties. The execute() method references the data using these
properties.

90 Struts 2 For Beginners

Explanation:
The above code spec justifies the following:

The data can be set and retrieved using a bunch of JavaBeans properties.

Here, for the data i.e. Name and the Message, the action class uses JavaBeans properties.

Data Entry Form And Action

In most standard Web applications, there are usually a set of data entry forms with a few
form fields that allow data capture. Actions require such data for further processing as per
the application's business logic, which is available in the request string or the Form data.

The Struts2 framework follows the JavaBean paradigm. This means to access a form field's
data, a GETTER / SETTER method is required.

The Struts2 framework, automatically, moves the Request parameters from the Form to the
JavaBeans properties that have matching names. In this case, the name parameter from the
Form is automatically assigned to the name JavaBeans property in the Action class.

Working With Actions 91

In Struts2 providing access to the request string and form values is not very different. Here,
each request string or form value is a simple NAME-VALUE pair. The action class should
hold a setter method to assign the VALUE for a particular NAME and a getter method to
retrieve the VALUE of a particular NAME.

In case of a call to a JSP page:
www.myserver.com/guestbook.action?page=1&msg=Hi

In this case, the Action would need the following SETTER methods:

 setPage(String page)
 setMsg(String msg)

Similarly when accessing such values in view mode, the following GETTER methods will be
required:

 getPage()
 getMsg()

RREEMMIINNDDEERR

The setter does not always need to be a String value. Struts2 is capable of
converting a String to the required data type.

HHIINNTT

JavaBeans properties in the Action class also help expose the data received [from
the Form] to the View/Result. For example, in the above code spec, using the
setMessage() method, the message is assigned to the msg JavaBeans property.
This, thus, exposes it to the View/Result.

Actions Return Control String

After the job is done, the action returns a control string. This string helps the Struts2 Filter to
decide the result/view that should be rendered.

Actions must return a string that map to one of the result components available for rendering
the view for that action. These mappings are placed in the configuration file called struts.xml.

92 Struts 2 For Beginners

Explanation:
The value that is returned as the control string must match the name of the desired result in
the configuration file i.e. struts.xml.

In the action class code spec, the action returns the string success. In the struts.xml file,
success is the name of the one of the result components that point to a JSP page that will be
rendered as the view.

The Helper Interfaces

Although, the action class does not need to:

 Extend another class
 Implement any interfaces

Sometimes it makes sense to extend helper classes or impplement interfaces provided by the
Struts2 framework.

Struts2 provides two such helpers that can be used. The first being the Action interface which
can be used to create action classes.

The Action Interface

The Action interface is an helper interface which exposes the execute() method to the action
class implementing it.

Working With Actions 93

Code Spec:
public interface Action
{
 public static final String SUCCESS = "success";
 public static final String NONE = "none";
 public static final String ERROR = "error";
 public static final String INPUT = "input";
 public static final String LOGIN = "login";

 public String execute() throws Exception;
}

This interface:

 Provides the common string based return values as CONSTANTS
 Enforces that implementing classes provide the default execute() method

The following table lists the CONSTANTS i.e. common results that can be returned by the
execute() method:

Results Description
SUCCESS The action execution was successful.
NONE The action execution was successful but do not show a view.
ERROR The action execution was a failure.
INPUT The action execution requires more input in order to succeed.
LOGIN The action could not be executed as the user was not logged in.

These constants can conveniently be used as the control string values returned by the
execute() method. The true benefit is that these constants are also used internally by the
framework. This means that using these predefined control strings allows tapping into even
more intelligent default behavior

The ActionSupport Class

The ActionSupport class is fairly simple. It adds a few useful utilities to the class that extends
it.

The ActionSupport class implements the Action interface and some more useful interfaces.

Since ActionSupport implements the Action interface, static fields such as ERROR, INPUT,
LOGIN, NONE and SUCCESS can be used in the class that extends it. There is already an
implementation of the execute() method, inherited from Action, that simply returns
Action.SUCCESS.

94 Struts 2 For Beginners

If a class implements the Action interface directly instead of extending ActionSupport, an
implementation of the execute() method needs to be provided. Hence, it's more convenient to
extend ActionSupport than to implement the Action interface.

In addition to the Action interface, ActionSupport also implements other interfaces:

 The Validateable and ValidationAware interfaces that provide programmatic,
annotation-based and declarative XML-based validation

 The TextProvider and LocaleProvide interfaces that provide support for localization and
internationalization

 Serializable interface used to create classes which enable the transfer of any binary object
over a communication channel by transferring all the data of the object in a byte by byte
manner

Code Spec:

public class ActionSupport
implements Action, Validateable, ValidationAware,
TextProvider, LocaleProvider, Serializable
{
 . . .
 public String execute() throws Exception
 {
 return SUCCESS;
 }
}

ActionSupport provides default implementations of several useful interfaces. If the actions
extend this class, they automatically gain the use of these implementations.

Since the ActionSupport class provides default definitions of methods of all interfaces
implemented by it, action class can be created by just extending this class and using its
methods.

Working With Actions 95

The simpleApp action class shown earlier, if it extends ActionSupport class looks like:

Role Of The Struts2 Filter

The Struts2 filter:

 Instantiates the Action
 Executes the method that is specified in the configuration
 Reads the control string i.e. the return value and chooses the View/Result to present

The Struts2 filter whilst handling an Action:

 Looks for a method called execute, if no method is specified in the configuration
 Generates the default view, if the return value is success

struts.xml

The struts.xml file holds the configuration information that is added/modified as actions are
developed. This is the place where the Struts2 filter looks for configurations.

96 Struts 2 For Beginners

Being an XML file, the first element is the XML versioning and encoding information.

This is followed by the Document Type Definition i.e. DTD for the XML. The DTD provides
structural information that the elements in the file should have and is used by XML parsers
and editor.

<Struts>

This is the outermost tag that contains the Struts2 specific configuration. All other tags are
held within this tag.

<Package>

The struts.xml file is broken down into logical units called packages.

The package tag is used to group together configurations that share common attributes such
as interceptor stacks or URL namespaces.

Packages are meant to help group the application's components based on commonality of
function or domain.

Packages group the following into a logical configuration unit:

 Actions
 Result types
 Interceptors
 Interceptor stacks

Working With Actions 97

RREEMMIINNDDEERR

Every action configured within a package inherits that package's configuration.

The Name Attribute [name="myApp"]

Indicates the name of the package.

The Namespace Attribute [namespace="/"]

The namespace attribute helps in separating different package into different namespace and
hence, help in avoiding action mapping confliction.

The namespace attribute indicates the location where the action is placed. It is used to
generate the URL namespace to which the actions of these packages are mapped.

In this case, the namespace specified is /. Hence to reach the simpleApp action, the Web
browser will need to request /simpleApp.action within the Web application's context.

This means, if the web-app is called my-app and it is running on a server called
www.myserver.com, the URL to access the action will be:
http://www.myserver.com/my-app/simpleApp.action

The Extends Attribute [extends="struts-default"]

The Extends attribute indicates the name of the parent package to inherit from. This attribute
holds a package name whose components will be inherited by the current package that is
being defined. This is very similar to the extends keyword in Java.

HHIINNTT

The struts-default package declares a huge set of commonly needed Struts2
components ranging from complete interceptor stacks to all the common result
types. These can be inherited by simply extending it.

Extending the struts-default package helps a developer avoid a lot of manual labor. This is
because extending this package brings a lot of components along with it. One such
component is the default Interceptor Stack.

98 Struts 2 For Beginners

RREEMMIINNDDEERR

The struts-default.xml [available in the distribution's main JAR file i.e. struts2-
core.jar] holds the declarations of all the interceptors that the struts-default
package brings in.

The Abstract Attribute [abstract="true"]

The Abstract attribute, if set to true, indicates that this package will only be used to define
inheritable components, not actions.

In short, the Abstract attribute is used to create a base package that can omit the action
configuration.

<Action>

The action maps an identifier to handle an action class. The action's name and framework use
the mapping to determine how to process the request, when a request is matched.

The Name Attribute [name="simpleApp"]

The action's name attribute indicates the name of the action within the Web application.

The action's name is concatenated with the package's namespace to come up with the URL of
the request:
http://www.myserver.com/my-app/simpleApp.action

The Class Attribute [class="com.book.myApp.simpleApp"]

The class attribute indicates which Java class will be instantiated for the Request.

The Method Attribute [method="execute"]

This is an optional attribute. This indicates the method to be invoked on a Request.

RREEMMIINNDDEERR

If this is un-specified, the filter assumes the execute() method.

<Result>

Each action element can have one or more result elements.

Working With Actions 99

Each result is a possible view that the action can launch. The Result tag has name and type as
its attributes.

The Name Attribute [name="success"]

This is an optional attribute, which indicates the result name.

RREEMMIINNDDEERR

If this is un-specified, the filter assumes success as the name.

The Type Attribute [type="dispatcher"]

This is an optional attribute, which indicates the kind of result.

RREEMMIINNDDEERR

If this is un-specified, the filter assumes dispatcher which forwards the Web
browser to the View [JSP] specified.

<Include>

The include tag can be used to modularize a Struts2 application. This tag allows including
other configuration files. It is always a child to the struts tag.

The File Attribute [file="guestbook-config.xml"]

This is the only attribute of the Include tag. It allows specifying the name of the file to be
included. The file being included should have a structure identical to the struts.xml
configuration file.

Here, configurations for the guestbook as well as the bookMaster are defined using two
different configuration files.

100 Struts 2 For Beginners

Getting Started With Actions

Now it's time to begin developing an Action. To understand Actions better, let's build a
simple application [source code available on the Book's accompanying CDROM].

Application Requirements

Create a Guest Book application that provides an interface to accept visitor comments as
shown in diagram 7.1. These comments should be viewable by other Web site visitors.

Diagram 7.1

Since this chapter focuses on the Model i.e. the Action class, let's build the action class to
support the guestbook application. In the chapters that follow, the other components that
make up the entire guestbook application will be built.

After all the components are in place, the visitors should be able to view the existing
guestbook entries and from the view using a link add new entries to the guestbook as shown
in diagram 7.2.

Diagram 7.2

After the visitor adds an entry in the guestbook, the entry will be added to the guestbook and
the visitor will be taken back to the page where such entries can be viewed.

Working With Actions 101

Based on the above requirements, the Action class will therefore be responsible for the
following:

 Displaying existing entries that are available in the guestbook
 Accept new entries to the guestbook

Technically, the following two kinds of files will be created to achieve this:

File Type File Name
A Bean class GuestBook.java
An Action class GuestBookAction .java

A Bean Class

To hold the captured data in a structured manner a bean class is required. This class should
expose the following properties:

Property Name To Store
guest Visitor's Name
message Message that the visitor enters
when The date/time on which the message was entered

The class should have a parameterized constructor that allows setting captured values to
these properties.

The primary purpose of having such a class is to hold individual guestbook entry as and
when they are captured.

Open the GuestBook application in the NetBeans IDE that was created earlier in Chapter 6:
Getting Started.

The following are the steps to create the Bean class using NetBeans IDE:

1. Right click Sources Package directory, select New Java Class… as shown in diagram
7.3.1

102 Struts 2 For Beginners

Diagram 9.3.1: Creating Java Bean Class

2. Enter GuestBook in the Class Name textbox and enter myApp in the Package textbox as

shown in diagram 7.3.2

Diagram 7.3.2: Naming the Java class file

Working With Actions 103

3. Click Finish

Now the bean class named GuestBook.java is created in the myApp package.

GuestBook.java

Edit the GuestBook.java file with the following contents.

104 Struts 2 For Beginners

Explanation:
A package named myApp is declared. This creates a directory named myApp under the
<Web Application>\build\web\WEB-INF\classes\ and the GuestBookAction.class file is
placed in the myApp directory when deployed.

The GuestBook class is a simple bean class that holds individual records. An object of this
class will be created in the action class to hold an individual record and the object will then
be added to the messages vector.

The Action Class

The visitor adds an entry using the data entry form.

The Action class will do the following:

1. Spawn an object of the bean class

2. Pass the captured values to its parameterized constructor

3. Store the data in a Static Vector by adding the populated object of the bean class in that
vector

Using NetBeans create one more class called GuestBookAction using the same steps as
shown earlier.

GuestBookAction.java

Edit the GuestBookAction.java file with the following contents.

Working With Actions 105

Code spec:

package myApp;

import java.util.Date;
import java.util.Vector;

106 Struts 2 For Beginners

Explanation:
The following interfaces/classes are included using the import statement:

 java.util.Date: Is a wrapper for a date. This class allows manipulating dates in a system
independent way

 java.util.Vector: Implements a growable array of objects. Like an array, it contains
components that can be accessed using an integer index. However, the size of a Vector
can grow or shrink as needed to accommodate adding and removing items after Vector
has been created

Code spec:

import com.opensymphony.xwork2.ActionSupport;

Explanation:
The ActionSupport class is a convenience class that provides default implementations of the
Action interface and several other useful interfaces and helps add a few useful constants such
as SUCCESS, INPUT, LOGIN and ERROR. These are string constants that can be utilized to
return values to the framework to decide the view as:

 return "success"

HHIINNTT

The framework does not make it mandatory to use this class, but it is a good idea
to use it at least when learning the framework.

Code spec:

public class GuestBookAction extends ActionSupport
{

Explanation:
The GuestBookAction class extends the ActionSupport class.

Code spec:

 private String guest;
 private String message;
 private Date when = new Date().toString();

 private static Vector messages = new Vector();

Explanation:
To collect data from the JSP file [where the user enters data], private variables are declared.

Working With Actions 107

Code spec:
 @Override

Explanation:
The above code spec indicates that a method declaration is intended to override a method
declaration in a superclass. If a method is annotated with '@' annotation type but does not
override a superclass method, then compilers are required to generate an error message.

Code spec:

 public String execute()
 {
 messages.add(new GuestBook(getGuest(), getMessage(), getWhen()));
 return SUCCESS;
 }

Explanation:
The execute() method is declared, which implements the logic of the action.

Inside the execute() method the name of the guest, its message and the date of capture is
added to the Vector messages.

Actions must return a string that map to one of the result components available for rendering
the view for that action.

The value that is returned as the control string must match the name of the desired result in
the configuration file i.e. struts.xml.

In the action class code spec, the action returns the string SUCCESS. In the struts.xml file,
SUCCESS is the name of the one of the result components.

Code spec:

 public String getGuest()
 {
 return guest;
 }

 public void setGuest(String guest)
 {
 this.guest = guest;
 }

108 Struts 2 For Beginners

 public String getMessage()
 {
 return message;
 }

 public void setMessage(String message)
 {
 this.message = message;
 }

 public Date getWhen()
 {
 return when;
 }

 public void setWhen(Date when)
 {
 this.when = when;
 }

 public static Vector getMessages()
 {
 return messages;
 }

 public static void setMessages(Vector messages)
 {
 GuestBookAction.messages = messages;
 }
}

Explanation:
Variables in a Java Bean normally have two methods associated with each variable i.e. a get
method and a set method.

The get method or getter retrieves the value stored in the variable. The set method or setter
sets the value for the variable. Both the set and the get methods are public.

When developing beans for processing form data, follow a common design pattern by
matching the names of the bean properties with the names of the form input fields. Also the
corresponding getter or setter method needs to be defined for each property within the bean.

Working With Actions 109

For example, within the GuestBookAction [the GuestBookAction.java file], the property
guest, the accessor methods getGuest() and setGuest() correspond to the form input element
named guest:

1. GuestBookAction.java:

private String guest;
public String getGuest()
{
 return guest;
}
public void setGuest(String guest)
{
 this.guest = guest;
}

2. GuestBook.jsp:

<s:textfield required="true" key="Your Name" name="guest" />

This completes the Action component for the Guestbook application. As indicated earlier, the
other components will be created in the chapters that follow.

Let's move on to the View layer and start exploring the rich options that the framework offers
for rendering result pages. The next chapter heads towards the Result component of the
framework and describes how data is pulled from the Model [using Struts2 tag libraries] and
rendered in the View.

